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The asymptotic structure of the three-dimensional turbulent boundary layer near a 
plane of symmetry is considered in the limit of large Reynolds number. A self- 
consistent two-layer structure is shown to exist wherein the streamwise velocity is 
brought to rest through an outer defect layer and an inner wall layer in a manner 
similar to that in two-dimensional boundary layers. The cross-stream velocity 
distribution is more complex and two terms in the asymptotic expansion are required 
to  yield a complete profile which is shown to exhibit a logarithmic region. The flow 
in the inner wall layer is demonstrated to  be collateral to leading order; pressure- 
gradient effects are formally of higher order but can cause the velocity profile to  
skew substantially near the wall a t  the large but finite Reynolds numbers 
encountered in practice. The governing set of ordinary differential equations 
describing a self-similar flow is derived. The calculated numerical solutions of these 
equations are matched asymptotically to an inner wall-layer solution and the results 
show trends that are consistent with experimental observations. 

1. Introduction 
Most boundary-layer flows in engineering applications are turbulent and threc- 

dimensional. However, until relatively recent times, a considerable majority of 
theoretical and experimental studies have dealt with the simpler two-dimensional 
boundary layer for which results have become well-established over the past few 
decades (at least for nominally steady flows). Unfortunately, the body of established 
information for three-dimensional boundary layers lags far behind the two- 
dimensional case. A common theme has been to  infer the nature of three-dimensional 
boundary layers based on ad hoc extensions of the two-dimensional theory. I n  
particular, a number of law-of-the-wall models have been proposed, but in a critical 
review (Pierce, McAllister & Tennant 1983) i t  is concluded that none of the models 
is satisfactory. There are several critical issues which have been controversial and 
involve seemingly conflicting experimental evidence. These issues will be discussed 
subsequently, but a t  this stage it is worthwhile to describe the general features of the 
three-dimensional boundary layer. 

Three-dimensional boundary layers are most conveniently described in a 
streamline coordinate system as shown schematically in figure 1. The velocity vector, 
which is aligned in the direction tangential to the external streamline at the 
boundary-layer edge, tends to rotate in the direction of decreasing cross-stream 
pressure gradient. Hence, as the wall is approached, the magnitude of the cross- 
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External streamline 
/ 

FIQURE 1. Schematic of a three-dimensional turbulent boundary-layer velocity profile. 

stream velocity increases from zero a t  the boundary-layer edge, reaches a maximum 
value, and then decreases back to zero at the wall in order to satisfy the no-slip 
condition. I n  contrast, the behaviour of the streamwise velocity is qualitatively 
similar to that in two-dimensional boundary layers. Both the streamwise and cross- 
stream velocities are zero at the wall and the tangent to the limiting streamline a t  
the wall is determined by the direction of the wall shear stress vector. In  general, the 
angle between the tangents to the external streamline and the limiting streamline a t  
the wall is non-zero ; therefore, as the breadth of the boundary layer is traversed, the 
velocity vector rotates through what will be referred to  as the skew angle a t  the wall. 
Similarly, the total shear stress vector tends to rotate away from its direction a t  the 
wall with increasing distance from the surface. 

The three-dimensional turbulent boundary layer is generally believed to be 
double-structured, consisting of a relatively thick outer layer and an inner wall layer. 
Here the term ‘wall layer ’ denotes the region close to the wall where the turbulent 
and viscous shear stresses are of comparable magnitude. The nature of the flow in the 
wall layer of a three-dimensional boundary layer has been the subject of some 
controversy. The earlier experiments of Johnston (1960) and Hornung & Joubert 
(1963) seemed to suggest that the flow near the wall is collateral and in the direction 
of the wall shear stress. Here the terminology ‘ collateral ’ implies that below a certain 
value of y+, the local velocity is aligned in the direction of the shear stress a t  the wall. 
Johnston (1960) claimed that this region extended from the wall to about y+ = 15, 
but Hornung & Joubert (1963) later stated that this region could extend to as much 
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as y+ = 150. A number of subsequent experiments (Prahlad 1973; Fernholz & Vagt 
1981) indicated that a substantial skewing of the velocity profile could occur in the 
region very close to the wall. In a review article, Johnston (1976), citing additional 
experimental data, remarked that about as much as half the total skewing of the 
velocity profile could occur from y+ = 0 to y+ = 100. However, other experimental 
data (Francis & Pierce 1967 ; Klinksiek & Pierce 1970) seemed to suggest that the 
flow close to the wall is indeed collateral. Unfortunately, measured profile data in the 
near-wall region of a three-dimensional boundary layer are rare. Evidently the issue 
of whether the flow is collateral or not in the region close to the wall has not been 
resolved by observation. 

Experimental data (Klinksiek & Pierce 1970 ; Pierce & Zimmerman 1973 ; Van den 
Berg et al. 1975; Hebbar & Melnik 1978) indicate that the streamwise velocity 
profile has a logarithmic zone, the extent of which is comparable to that in two- 
dimensional boundary layers. This has led some authors (e.g. Chandrasekhar & 
Swamy 1976) to speculate on the existence of a similar region for the cross-stream 
velocity. A few law-of-the-wall models have been proposed which assume a 
logarithmic profile for the cross-stream velocity, but there appears to be no clearly 
supportive experimental corroboration. Another issue of some note is the choice of 
the appropriate velocity scale in the wall layer. In two-dimensional boundary layers, 
the obvious scale is the friction velocity u,, the square of which is defined as the wall 
shear stress divided by the density. However, in three-dimensional boundary layers, 
there are a number of possibilities, some of which have been discussed by Pierce 
et al. (1983) who conclude that there is no clear choice for the wall-layer velocity scale. 

One approach to constructing a three-dimensional ‘law of the wall’ is to determine 
the asymptotic structure and the scaling laws for the three-dimensional turbulent 
flow equations in the limit of large Reynolds number. The asymptotic structure for 
two-dimensional boundary layers has been developed by a number of authors 
(Yajnik 1970; Mellor 1972; Fendell 1972), with results that are consistent with 
Clauser’s (1954, 1956) synthesis of experimental data. However, analysis of the 
three-dimensional problem has been restricted to a recent study by Goldberg & 
Reshotko (1984) who extended Mellor’s (1972) work to three dimensions. They 
concluded that in the inner wall layer, the flow is collateral and that the pressure- 
gradient and convection terms are negligible through three leading-order terms ; 
although their analysis is valid in the limit of infinite Reynolds number, the result 
of collateral flow throughout the extent of the wall layer does not appear to  be 
corroborated by experimental data at  the Reynolds numbers encountered in 
practice. In Goldberg & Reshotko’s (1984) asymptotic expansions of the velocity, the 
form of the gauge functions was assumed a priori and unfortunately it is very difficult 
to account for the effects of pressure gradient in the wall layer even when such an 
analysis is extended to higher orders. However, it  is widely believed (see, for 
example, Nash & Pate1 1972) that the pressure gradient is responsible for skewing of 
the velocity profile in the wall layer. Earlier, Van den Berg (1975) attempted to 
reconcile experimental data with analytical results by including the effects of both 
pressure gradient and convection on the flow in the wall layer. With the x-axis of a 
local Cartesian coordinate system aligned along the shear stress direction at the wall 
and z measuring spanwise distance, an integration of the x- and z-momentum 
equations was carried out by neglecting the spanwise convection terms and assuming 
a logarithmic asymptotic form (for large y+) for the x-direction velocity. Although 
Van den Berg’s (1975) approach accounts for some of the effects of pressure gradient 
and convection in the wall layer, it is limited in its applicability because the proposed 
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inner-layer solutions were not matched to an outer-layer solution and the means of 
accomplishing this match were not addressed. Furthermore, the velocity skew angle 
a t  the wall was assumed known for a given external flow condition. Recently 
Barnwell (1991) has also indicated a procedure for incorporating pressure-gradient 
effects near the surface in a compressible flow. It will be shown in the present study 
that the velocity skew angle is dependent on the Reynolds number and must be 
determined as part of the boundary-layer solution. 

2. Motivation and objectives 
It is evident from the foregoing brief survey of research progress in three- 

dimensional turbulent boundary layers that there are a number of important 
fundamental issues. An asymptotic analysis was carried out in this study since it has 
the potential of systematically addressing and resolving several aspects. I n  
particular, the following specific points are of interest : 

( a )  In  practical flows of interest, the inner layer is believed to extend from the wall 
to about y+ = 50 - 100. Although a number of researchers have observed what 
appears to be collateral flow in the near-wall region, none (with the exception of 
Hornung & Joubert 1963) have claimed the flow to be collateral all the way to y+ = 
100. Since the pressure gradient is believed to cause skewing in the wall layer, the 
asymptotic analysis should be capable of quantitatively determining the influence of 
the pressure gradient on the inner flow a t  Reynolds numbers encountered in practice. 
The present study is in the spirit of Fendell’s (1972) analysis, where the appropriate 
asymptotic expansions are indicated during the course of the analysis (see also Van 
Dyke 1964, p. 93); this is in contrast to the studies of Mellor (1972) and Goldberg & 
Reshotko (1984) where the form of the gauge functions was assumed a priori. 

(b)  Unlike the streamwise velocity profile, the existence of a logarithmic zone for 
the cross-stream profile has not been established. Furthermore, no rational model has 
been proposed which describes the manner in which the cross-stream velocity 
increases from zero a t  the boundary-layer edge to a maximum value within the 
boundary layer, and then adjusts back to zero to satisfy the no-slip condition a t  the 
wall. The present analysis will show that the characteristic ‘bulge’ in the cross- 
stream velocity is a natural consequence of its asymptotic form in the matching 
region between the wall and outer layers. 

( c )  Although an asymptotic analysis cannot determine a specific closure (such as 
an eddy-viscosity model) throughout the boundary layer, it  can suggest the correct 
scaling laws and constrain the possible forms allowable for asymptotic consistency 
with the flow structure; in this manner, a basis is established to assess the possible 
extensions of various two-dimensional algebraic eddy-viscosity models (such as the 
Cebeci-Smith 1974 and Baldwin-Lomax 1978 models) to three dimensions (see, for 
example, Cebeci 1975 ; Wie & DeJarnette 1988). 

( d )  Through an asymptotic analysis of the governing equations, it is possible to 
determine quantitatively the dependence of the skew angle a t  the wall on the 
Reynolds number, an issue which has not been discussed previously in the literature. 

In  their asymptotic analysis of the full three-dimensional equations, Goldberg & 
Reshotko (1984) worked in Cartesian coordinates and assumed that the mainstream 
velocity had two orthogonal non-zero components. The velocity in the two directions 
was treated in the same fashion, thus yielding a two-dimensional ‘law of the wall ’ for 
both directions. However, such an analysis is possible only when each component of 
the outer-layer velocity can be expressed as a sum of a non-zero mainstream velocity 
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and a defect function. The approach fails when either of the two components of the 
external velocity is zero. The issues involved in the analysis of the full three- 
dimensional equations are complex and involve a number of subtle points. 
Consequently, as a first step, the simplest possible three-dimensional turbulent 
boundary-layer flow is considered here, namely the flow in a plane of symmetry, 
where in general the flow develops independent of the rest of the boundary layer. The 
advantage of such an approach is that, to leading order, the streamwise momentum 
equation can be analysed independently of the cross-stream equation. Once the 
asymptotic structure of the streamwise momentum equation is established, the 
cross-stream equation can then be addressed. In the plane of symmetry, the cross- 
stream velocity and the total stress are both identically zero; however, their cross- 
stream gradients are non-zero, and the asymptotic expansions are developed for 
these quantities. The resulting solutions are the first terms in a Taylor series 
expansion about the plane of symmetry, and, therefore, may be used to infer the flow 
behaviour near the plane of symmetry. 

In view of the above motivation, the objectives of the present study are as follows : 
(i) to establish the asymptotic structure of the three-dimensional turbulent 

boundary layer in a plane of symmetry by developing a self-consistent set of scaling 
laws which are also compatible with experimental observations ; and 

Although the self-similar profiles represent a subset of more general types of flow, 
they are useful in developing an understanding of the essential structural features of 
a three-dimensional turbulent boundary layer. 

(ii) to obtain sets of self-similar velocity and shear stress profiles. 

3. Governing equations 
Consider a three-dimensional boundary-layer flow and let Uref and L,,, be a 

representative speed and length, respectively ; the Reynolds number is defined as 
Re = Uret Lref/u, where v is the kinematic viscosity. In dimensionless variables, the 
Reynolds-averaged boundary-layer equations in a general orthogonal curvilinear 
coordinate system are 

(3.3) 

Here (xl, x,) are coordinates in the plane of the wall, 2, measures the distance normal 
to the wall, and ui is the velocity in the xi direction ; pe(x l ,  x,) denotes the mainstream 
pressure distribution. Furthermore, h, and h, are the metric coefficients, and K ,  and 
K ,  are the curvatures defined by 

1 ah, K 1 ah, K ' -  hlh,axl' '- hlh,ax,' 
(3.4~3, b)  

In accordance with conventional boundary-layer theory (Nash & Pate1 1972), the 
metric coefficient in the normal direction h, is taken equal to unity and h, and h, are 



334 A .  T.  Degani, F .  T.  Smith and J .  D .  A .  Walker 

assumed independent of x,. Finally, 7,, and 723 are the total shear stresses in the x, 
and x2 directions, respectively, and are given by 

1 au. 
7i3 = s i 3 + - -  i = 1,2. 

Re ax, ’ (3.5) 

Here gt3 are the dimensionless Reynolds stresses defined in the usual way (see, for 
example, Hinze 1975) in terms of time averages of the products of the fluctuating 
velocities and which in general must be modelled. 

Let ( Ule, Uze, 0) denote the limiting velocity distribution of the external inviscid 
flow near the surface (x, + 0). A streamline coordinate system is adopted in which x, 
and x, are coordinates along and perpendicular to streamlines a t  the boundary-layer 
edge, respectively. In this system, 

where U, is the flow speed along the external streamlines near the surface. Therefore, 
as the boundary-layer edge is approached, ul+Ue  and u2+0, and hence the 
streamwise and cross-stream pressure-gradient terms in (3.2) and (3.3) can be 
replaced by 

(3.7a, b)  

respectively. For a given external flow field, the metric coefficients may be obtained 
as follows. Assuming that the component of vorticity normal to the surface is zero, 

Because U,, is zero everywhere, h, = C , / U e ,  where C, is a scaling factor which may 
be set to unity without loss of generality. To obtain the second metric coefficient, h,, 
first define a function q(x1,x2) such that 

(3.9) 
au3, 

x,-0 8x3 
qrJe = Lim -, 

where U,, denotes the normal velocity distribution in the external flow. The 
continuity equation (3.1) a t  the boundary-layer edge becomes 

(3.10) 
a 

3x1 
- (h, [ Ie )  + h, h, qU, = 0, 

or, upon using (3.4a), it follows that. 

1 ah, 1 aUe 

hlh,  axl Ue h, ax, 
+ 4. K - (3.11) 

Equation (3.11) defines a differential equation for h, which may be integrated along 
individual streamlines. For the special case of q = 0 (corresponding to inviscid flows 
which are effectively independent of x3 near thc surface) a solution of (3.11) is 
h, = Uil .  

To obtain the governing equations along the plane of symrnctry, x, = 0, it may be 
noted that all quantities appearing in (3.1)-(3.3) are even functions in x,, with the 
exception of u,, K,, T,, and u2,, which are odd in x,. Consequently, expanding each 
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term in (3.1)-(3.3) in a Taylor series about x2 = 0 and retaining only the leading- 
order terms, the governing equations for the plane of symmetry may be shown to be 

a au3 - 
ax1 ax3 

u,au, au ueaue aT13 
+ u A = - -  +-9 

u1 au; 2 - a7;3 -- + u;2+ u3 2- 2K, u1 u; -K;( uz, - u,) - -, 
hl ax, ax3 3x3 

- (h, u,) + h, h2 U; + h, h,- - 0, 

-_ 
h, ax, ,ax, h, ax, ax, 

where the primes denote the following quantities evaluated a t  x2 = 0:  

1 au 1 aK2 - 1 a2h, 
h, ax2’ - h, ax, h,h: ax: ’ 

uf=-2 K ’ -  

1 au; 
7;, = - - 3 7 2 3  = g ; 3 + - - .  

Re ax, 
I aa23 r2, = --, 

h, 3x2 h, ax., 

(3.12) 

(3.13) 

(3.14) 

(3.15a, 6) 

(3.16a, b)  

At an x,  location off the plane of symmetry, the unprimed quantities are related to 
their primed counterparts by 

U, = X2h,u;+O(xi), K ,  = x,h,K;+O(x~),  (3.17a, b )  

(3.18a, b )  

The above equations are exact in the plane of symmetry but accurate to O(x:) near 
the plane of symmetry. The boundary conditions are given by 

u1 = u; = u3 = 0 a t  x3 = 0, (3.19) 

and ul+ue, u;+o, (3.20) 

a t  the boundary-layer edge. 

~ 2 3  = ~2 h, 4 3  + O ( X ~ ) ,  7 2 3  = x2 h, Ti3  + O(xi). 

4. The asymptotic structure in the limit of large Reynolds number 
The two-dimensional turbulent boundary layer has a self-consistent two-layer 

structure in the limit of Re --f 00, which has been described by a number of authors 
(Yajnik 1970; Fendell 1972; Mellor 1972). A similar but more complicated structure 
is expected for three-dimensional boundary layers. For a plane of symmetry, it is 
observed from (3.13) that the streamwise momentum equation is similar to  that in 
two-dimensional flow apart from the change in the normal velocity u3 due to u; in 
(3.12). This suggests that the structure for the two-dimensional problem should carry 
over to the plane of symmetry to leading order. However, it emerges that the 
symmetry-plane problem is more complex and the analysis must be completed 
through two orders to  obtain physically meaningful results €or the cross-stream 
velocity distribution. A brief outline of the main ideas used to obtain the gauge 
functions will be presented here and a more detailed development is given elsewhere 
(Degani 1991). 

First some important nomenclature is introduced. Let u, denote the dimensionless 
friction velocity defined in the usual way as 

1 

u, = 7&, (4.1) 
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where 7, is the dimensionless wall shear stress. Next, by definition, the wall skew 
angle 8, is given by 

A Taylor series expansion of 8, about the plane of symmetry defined by x2 = 0 gives 

tan8, = r23/713 at x3 = 0. (4.2) 

(4.3a, b) 

Consequently, substitution of (3.18b) and ( 4 . 3 ~ )  into (4.2) and evaluating the 
resultant expression a t  x2 = 0 yields 

&, = T ; ~ / T ~ ~  a t  x3 = 0. (4.4) 

Finally, there are two pressure-gradient parameters relevant to the present study 
and these are defined according to 

(4.5a, b )  

where the pressure gradients are given by (3.7). Here do is a function representative 
of the boundary-layer thickness and is of O(u,) (Fendell 1972). The function pn 
vanishes a t  x2 = 0 ;  however, with the use of (3.7b) and (3.17b), a Taylor series 
expansion of p,, yields 

(4.6a, b) 

where ph is in general non-zero along the symmetry plane. 
The asymptotic analysis is taken up now. First, consider known results for the 

leading-order streamwise problem. The Reynolds and total shear stresses are O(u,2) 
throughout the boundary layer, while the leading-order terms for streamwise 
velocity in the outer and inner layers are of the form (Fendell 1972; Walker et al. 
1989) 

u1 = u,(x,)+u,(x,;~e)-(x,,~)+..., aF1 ( 4 . 7 ~ )  

(4.7 b) 

a7 

u1 = u,(xl;Re)U+(y+)+ ..., 

respectively. The scaled outer and inner variables are defined by 

7 = z3/d0, y+ = x3 /d i ,  A ,  = (lieu,)-’, (4.8a-c) 

where the conventional definition of y+ has been used. In the overlap zone, both 
profile functions in (4.7) behave logarithmically (Fendell 1972) according to 

aF, 1 

a7 K 
---log7+C0 as 7 + 0 ,  

and 

( 4 . 9 ~ )  

(4.9b) 

Here K is the von Kirmin  constant and C, is the inner-region log-law constant which 
are often assumed to have universal values of 0.41 and 5.0, respectively; C, is a 
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function of x1 which is determined, in general, from a numerical solution for M!Jav. 
Matching of the velocities in (4.7) and using (4.9) yields the match condition 

2- u 1  
- -log (Re u, A,)  + Ci - C,, 

u, K 
(4.10) 

which relates u, to the Reynolds number and the outer thickness A,. It is noted in 
passing that it follows from (4.10) that u, is O( l/log Re) to  leading order. 

The primary balance within the wall layer is between the Reynolds and viscous 
shear stresses since the pressure-gradient and convective terms are of higher relative 
order. Thus, (3.13) reduces to tk13/ax3 = 0, and as a result the total shear stress in the 
wall layer is constant to  leading order and equal to the value at the wall, viz. 

713 = u,". (4.11) 

Since the viscous stress is expected to be small for large y+, (4.11) establishes the 
order of magnitude of the Reynolds stress; hence 

CT13 = u," CT,(yf) + . . . . (4.12) 

Substitution of (4.7b), (4.8), (4.11) and (4.12) into (3.5) yields 

d U+ 
-+cl = 1 ,  
dY+ 

(4.13) 

which is the mathematical statement that the sum of viscous and Reynolds stresses 
is constant in the wall layer. In  view of (4.11), the total shear stress in the outer layer 
is expanded according to 

713 = u," q(z, ,7)  +. . . (4.14) 

where q + l  as 7+0.  (4.15) 

Note that the expansion (4.14) reflects a somewhat different approach for the outer 
layer from that adopted by Fendell (1972) as described by Degani (1991). 

The first-order results are well-known and the objective now is to develop the next 
terms in the expansions. To this end, consider first the streamwise momentum 
equation in the wall layer. Upon substituting (4.7b) into (3.13) and using (4.8c), it 
may be shown that 

( U + ) 2 + K , ~ [ ' U + d y + } + . . .  dY+ (4.16) 

to  leading order. Integration of the above equation from y+ = 0 and subsequent 
evaluation for large y+ yields the asymptotic form of 713 a t  the wall-layer edge, viz. 

1 u, au, + u, 1 auey+iog2y+ 
713 = u;---- y +--- +... as y++m. (4.17) 

Reu, h, ax, Re U,h, ax, 

The first term in (4.17) matches the outer-layer expansion (4.14) as q + O  but, to 
complete the matching, higher-order terms are required in the expansion for 713 in 
the outer layer. The form of (4.17) suggests the following extension of the expansion 
(4.14) : 

713 = u,"  XI, 7) +-%(XI, u," 7)  + ... . (4.18) 
ue 
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It can be verified that in order to  match the shear stress in the outer layer to the 
asymptotic form in (4.17), and T, are required to behave according to 

2PS q - l--qlogv+ ..., 
K 

P s  T, - 7 7  log2v+ ... as q + O ,  
K 

(4.19a) 

(4.19b) 

where PS is defined by (4.5a). It should be emphasized that a specific turbulence 
closure has not been made a t  this stage in the analysis and that (4.19) are valid 
regardless of the choice of turbulence model. 

It may be inferred from (3.13) and (4.18) that  in the outer layer, the corresponding 
expansion for u1 is of the form 

aFl ul aF, 
u1= U,+u,-+--+ ... . 

u e  
(4.20) 

The second-order term in (4.20) must vanish for large 7 and, as discussed below, in 
this study 

(4.21) 

In  general, the quantities C, and C, in (4.9a) and (4.21) are functions of x1 which are 
to be found and whose values depend on the specific closure model adopted. The form 
of (4.21) merits some discussion. If the leading-order term in (4.21) were logarithmic 
(as is the case in (4.9a)), a term O(u,2/Ue) would be required as the next term in the 
expansion (4.7b). But, in the present study, the first term in (4.7b) captures the entire 
logarithmic structure of the wall layer that would otherwise require an inner 
expansion in terms of a parameter E which to  leading order is O(u,/U,) (cf. Mellor 
1972). This point is discussed in greater detail elsewhere (Degani 1991). Upon 
matching (4.7b) and (4.20) by using (4.9) and (4.21), it may be easily confirmed that 
the match condition (4.10) up to second order now reads 

1 U - ‘e = -log (Re u, A , )  + c,- C, -2 C,  + . . . . 
u, K u e  

(4.22) 

The leading-order expansions given here are in accordance with past analyses 
(Yajnik 1970 ; Fendell 1972 ; Mellor 1972) ; however, there are significant differences 
in the higher-order terms which merit some discussion. In the conventional approach 
used by Mellor (1972) and Melnik (1981), the wall-layer velocity and outer-layer 
defect function are expanded in a power series of a small parameter E which is 
O(l/logRe). The parameter E is taken to be independent of x1 with E + O  as Re+ co 
(see also Neish & Smith 1988). Substitution of a power series in E for the inner-layer 
expansions into the momentum equation then leads to  the conclusion that the total 
shear stress in the wall layer is a constant to all orders in E and consequently the 
pressure gradient does not influence the wall-layer flow. Using this expansion 
scheme, a similar conclusion was reached by Goldberg & Reshotko (1984) for three- 
dimensional boundary layers. However, a difficulty with this expansion procedure is 
that it is not capable of including the effects of pressure gradient. The present 
analysis follows Fendell’s (1972) approach where the x1 and Re dependence is 
contained implicitly in the expansion parameters u, and A,,. 
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The cross-stream problem is somewhat subtle and the asymptotic structure for this 
aspect will now be addressed. In  the outer layer, u; is expected to be comparable to 
the streamwise defect velocity, i.e. O(u,) ; therefore, in the outer layer let 

(4.23) 

to leading order. Here #* is 0(1 )  and will subsequently be shown to be proportional 
to ew. At the boundary-layer edge, aG,/ay + 0, but as 7 decreases within the outer 
layer, u;1 is expected to increase in magnitude under the influence of the cross-stream 
pressure gradient. However, aG,/ar] cannot behave logarithmically as 7 - t O  since the 
wall layer cannot adjust a function which is logarithmic to leading order to zero at 
the wall; thus aG,/aq is expected to be 0(1) for small 7. To confirm that this is the 
case, consider first the form of (3.14) in the wall layer. The orders of magnitude of u; 
and rt3 have not been determined at  this stage but are expected to be at  most O(u,) 
and O(u,"), respectively. Thus, the convection and cross-stream pressure-gradient 
terms on the left-hand side of (3.14) are expected to be at  most O(u,2) and 0(1) and, 
therefore, negligible with respect to the total stress gradient. Consequently, to 
leading order in the wall layer, 

ar;3/ay+ = 0. (4.24) 

This result is supported by the scalings subsequently derived for the cross-stream 
wall-layer flow. Thus is a constant to leading order in the wall layer and equal to 
its value at the wall. Consequently, from (4.4) and (4.11), 

Tk3 = 8; u,". (4.25) 

Following arguments similar to those associated with the streamwise problem, 
expand the cross-stream Reynolds stress and u; in the wall layer according to 

(4.26) 

where 5, and Q+ are to be found. Using the (3.16b) and (4.25), along with (4.8c), the 
governing equation in the wall layer to leading order in the cross-stream direction is 

a;3 = e; u," *,(y+) + . . . , u; = 9; u,Q+(y+) + . . . , 

dQ+ -+a, = 1. 
dY+ 

(4.27) 

From (4.13), the above equation is identically satisfied if 

Q+(y+) = U+(y+), a,(y+) = a,(y+). (4.28a, b)  

This implies that the flow in the wall layer is collateral to leading order, a result 
previously obtained by Goldberg & Reshotko (1984). 

It follows from (4.26) and (4.28) and the asymptotic condition (4.9b) that 

u;l- OLu, -logy++C, as y++oo. {: I (4.29) 

Using (4.8) and the match condition (4.10), it is easily shown that in the outer layer, 

which supports the argument behind (4.23), and gives 

ew = (u,/ue)e*. 

(4.30) 

(4.31) 
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Since the quantity el,, which was introduced in (4.23), is 0(1),  an important result of 
the present analysis is that 0; is O(u,/U,) or alternatively, from (4.3a), the skew 
angle a t  the wall Ow - O(u,/U,) for a fixed x2 location off the plane of symmetry. 

The appropriate expansion for the cross-stream velocity in the outer layer is 
inferred by substituting (4.31) into (4.30) and is given by 

subject to conditions 

aG2 1 
-+ aG1 1, -+-logq+C, as 7 + 0 .  
a7 37 K 

In addition, a t  the mainstream 

(4.32) 

(4.33a, b )  

(4.34) 

In the wall layer the leading-order terms for Reynolds stress and u; are obtained by 
substituting (4.31) into (4.26) ; this results in 

(4.35 a, b )  

and it is important to note that vh3 and u; are smaller than their streamwise 
counterparts in the wall layer by an amount O(u,/U,). With the leading-order terms 
determined in the wall layer, (4.24) is confirmed. 

At this stage, it is worthwhile to discuss how the cross-stream velocity attains the 
characteristic profile ‘bulge ’. In  the outer part of the boundary layer, that is at 7- 
locations above the maximum cross-stream velocity, u; is dominated by the first- 
order term, i.e. the term O(u,) in (4.32). As 7 decreases to  zero, the first-order term 
increases and asymptotes towards u,Ol,. However, as 7 decreases towards zero, the 
logarithm in the second-order term in (4.32) eventually begins to contribute 
significantly and reduces the sum of the O(u,) and 0(u,2/Ue) terms to O(u;/U,), in 
much the same fashion as the sum of the external velocity U, and the defect function 
reduces the streamwise velocity to  O(u,) in the wall layer; this represents that part 
of the profile below the 7-location of the maximum cross-stream velocity where both 
terms in (4.32) are significant. Therefore, the ‘bulge’ in the cross-stream velocity 
profile is a natural consequence of the asymptotic structure ; this result is in contrast 
to Goldberg & Reshotko (1984) who adopted an empirical formula to obtain the 
desired profile shape in the cross-stream direction. 

The form of the higher-order terms in the cross-stream momentum equation is 
addressed now. It is easily shown from (3.14) that 

- a d 3  - - -- I K; u2, + U-K;{ U+(Y+)}~ + . . . . 
ay+ Re u, Re 

(4.36) 

Integration of this equation from y+ = 0 and subsequent evaluation for large yf 
yields 

u y+ log2 y+ +.. .  as y++co. (4.37) 
1 3 

Tt3  -U-~,--K;~~++IK; Re K2 
U, R e u ,  
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This suggests that the cross-stream total shear stress in the outer layer has the 
following expansion (cf. (4.17) and (4.18)) : 

" e  

where the functions 5 and are required to behave according to 

2Y 
@, - y q l o g q + . . . ,  

(4.38) 

( 4 . 3 9 ~ )  

- i+,qlog2q+ Y ... as q + ~ ,  (4.398) 
K 

in order to match the asymptotic form in (4 .37) .  Here, y is defined according to 

y = -flnlfl*, (4.40) 

where pk is defined in (4 .6) .  Once again, the asymptotic forms given in (4.39) are 
independent of any specific turbulence model. 

5. Outer-layer similarity equations 
Self-similar flows have historically been of interest as useful special cases of more 

general types of boundary layers. Self-similarity implies that the velocity 
distributions, when appropriately scaled by local flow conditions, become inde- 
pendent of the streamwise coordinate x,. Such solutions will be obtained here as an 
illustration of an application of the present analysis as well as to motivate a 
discussion of some general features of the profiles. For a two-dimensional flow, self- 
similar velocity profiles in the outer region depend only on the streamwise pressure- 
gradient parameter /?, defined by ( 4 . 5 ~ )  (see, for example, Fendell 1972). For the 
plane of symmetry, the cross-stream parameter fin, defined in (4 .6b) ,  comes into play. 
A family of self-similar solutions in the plane of symmetry will subsequently be 
obtained, which depend solely on the two independent parameters p, and fin. 

Defining quantities ll. and qi by 

all., u ' = - -  la'  
% = - -  h2 ax, h, ax3' 

+ = q i = ~  at q = o ,  

it  follows from the continuity equation (3.12) that 

1 all. qi 
u3 = h, h, ax, h, ' 

The asymptotic analysis of $4  indicates that, in the 
expanded up to second order according to 

(5.2) 

outer layer, I) and qi should be 

(5 .3b)  
"e  

The expansions for the total stresses (in (4.18) and (4 .38))  and the functions in (5 .3)  
are to be substituted into (3.13) and (3.14) with the aim of isolating first- and second- 



342 A .  T. Degani, F. T. Smith and J .  D.  A .  Walker 

order problems for the profile functions & and G,, i = 1,2. These substitutions give 
rise to terms involving au,/ax,, and an expression for this quantity may be obtained 
by differentiating the match condition (4.22) and using the fact that Co and C, must 
be constant for self-similarity (cf. ( 4 . 9 ~ )  and (4.21)). It is easily verified that 

where u,, and a are defined by 
u* = U,/U,, 

and 

and /3, is as defined by ( 4 . 5 ~ ) .  In addition to the parameters a,/?, and y (see (4.40)), 
there are three other parameters which occur in the leading-order equations and 
these are defined here as follows: 

v = qUeA,/u,, (5.7) 
h = U, A ,  &/u,, (5.8) 

Because the analysis is carried out to second order, it is necessary, in principle, to 
account for the fact that a, /3, and y ,  as well as the parameters defined in (5.7)-(5.9) 
which are all O(1) to leading order, may have expansions in powers of u*. However, 
a convenient choice for A, will be made subsequently (see (5.20) below) and thus v and 
/3, may be considered to be fixed in terms of the outer scale A ,  and known 
mainstream quantities. On the other hand el, is to be determined, and since it is 
proportional to a scaled angle a t  the wall (cf. (4.3) and (4.31)), it is expected to 
involve contributions from both the first- and second-order profiles. Thus y and A,  as 
well as the quantities a and 6 which contain streamwise gradients of boundary-layer 
quantities, must generally be expanded as series in u* according to 

a=tC,+U*a,+ ..., ( 5 . 1 0 ~ )  
S = sO+u*S,+ ..., (5.10b) 
y=yo+u*y,+. . . ,  (5.10~) 
h =h,+u*A,+ ..., (5.10d) 

where a,, a,, So, S,, yo, y,, A, are constants to be determined. 
With the above definitions, the following leading-order equations are obtained : 

dTl d2F, dF 
-+(a,-v)77+2/3,'  = 0, 
dv d7 d7 

d7 d7 d7 dv 
-+ d z  (a, - v) d2G, (2v-/3,- 6,) dG = 2y,-. dF1 

The second-order terms satisfy 

(5.11) 

(5.12) 

(5.13) 

(5.14) 
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where 

and 

343 

(5.15) 

(5.16) 

Equations (5.11)-(5.16) contain nine parameters a,, a,, So, a,, /3,, yo, y,, v and A, 
which must all be constants for a similarity solution to be possible; however, these 
constants are not all independent and connecting relations are now derived. 

The streamwise displacement thickness is defined by 

6* = /: { 1 -$} dx,. (5.17) 

Upon substituting the expansion for the streamwise velocity given in (4.20) and 
carrying out the integration, it follows that 

(5.18) 

where F,,  denotes the limit of F,(r]) for large 7,  and the conditions 

Ki(7)+0, FZ(T)+O as 7+0,  (5.19) 

have been used. The outer lengthscale A ,  is defined (Fendell 1972) according to 

A,, = S*Ue/u,, (5.20) 

and it then follows from (5.18) that 

Fl, = - 1,  F2, = 0. (5.21) 

The streamwise and cross-stream pressure-gradient parameters, defined by (4.5) 
become 

and from (4.6b), 

( 5 . 2 2 ~ )  

(5.22b) 

Thus bs is equivalent to the Clauser parameter defined in connection with self-similar 
two-dimensional turbulent boundary layers (Mellor & Gibson 1966). Similarly, v, y 
and A may all be written in terms of 6*. 

An integral of the first-order streamwise equation (5.11) is readily obtained 
(Fendell 1972). Using the boundary conditions 

q+l;  r-,F,+O m1 as 7+0, T , , q - + O ;  m1 Fl+-l as q + m ,  
d7 d7 

(5.23) 
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integration of (5.11) across the boundary-layer thickness yields 

a. = 1+v+2Ps, (5.24) 

determining a. for a given v and A. 
Next, since A. and A, must be constant for similarity, it follows from (5.4) and 

(5.10d) that dA/dz, is O(u2,). Upon differentiation of (5.8) and with subsequent use 
of (5.6), (5.9) and the definition of /3,, it may be shown that 

S = -a-u,- (a - + O(u2,). 
K 

Therefore, from (5. lo), 

(5.25) 

(5.26) 

An expression for a, is derived by integrating the second-order streamwise 
equation in a manner similar to that for the first-order equation. Using the boundary 
conditions 

%-to; y A , F z + O  dF as y+O, % + O ;  y-,F,+O mZ as y+m, (5.27) 
drl drl 

integration of (5.13) across the boundary-layer thickness yields 

where 

a1 = (l + + (1 +P,) As,,+ A, As,,, K 
(5.28) 

(5.29) 

Both of these constants may be evaluated once the first-order profiles are known. 
Note that the conditions on Fz at the boundary-layer edge (i.e. as y +  00) in (5.27) 
require modification when an interaction with the external flow is accounted for 
(Neish & Smith 1988). 

Next, define a quantity u according to 

= A ,  UeIU,, (5.30) 

and upon using (5.4), it is easily shown that 

i acr 
_ _  = a,+O(u*). 
hlaxl 

(5.31) 

Note that by definition u is always positive. It has been shown elsewhere (Degani 
1991) that a. = 0 corresponds to a degenerate case of a two-dimensional flow, and for 
brevity this case is not considered here. If s measures distance along the plane of 
symmetry, then ds = h,dq  and for a. + 0 integration of (5.31) yields 

u = ao(s -so)  (5.32) 

to leading order, where so is the constant of integration. Using the definitions of Ps 
and v along with (3.11), it  is evident that 

(5.33) 



The three-dimensional turbulent boundary layer 345 

Upon using (5.32) and noting that ds = h,dx, along the plane of symmetry, 
integration of (5.33) yields 

u, = u, IS-sol-flS/ao, h, = h,, Is-s,I(fls-~)~ao, (5.34a, b )  

where U, and h,, are constants along x2 = 0. Note that ( 5 . 3 4 ~ )  is the usual power-law 
dependence associated with self-similarity. Also, from the definitions of A, y ,  u and 
pn, it follows that K ;  = Ay/a2 and, consequently, from (5.10) and (5.32), 

K ' =  A0 Yo 
ai(s - so)2 

2 (5.35) 

t o  leading order. The cross-stream pressure gradient is then obtained using (4.6), 
(5.30), (5.32), (5.34) and (5.35) and is given by 

(5.36) 

since u is positive. 
We henceforth consider a specific class of solutions in which /3, is constant along 

individual streamlines adjacent to the plane of symmetry. Since x2 = constant 
defines the equation of a streamline, then for Pn to be independent of s, (5.36) implies 
that  v = -CZ,+ /~~.  This result when combined with (5.24) yields 

v = -1 

Upon defining a constant pno by 

2 ( 1  + P S I ,  010 = t(l+38,).  

A0 = Pn/(x2h20)? 

and combining (5.36) and (5.37), it follows that 

A, = -pno-. I 1 + 3pSi 
2Yo 

(5.37) 

(5.38) 

(5.39) 

It is assumed here that the cross-stream pressure gradient is given in the form in 
(5.38) and therefore pno is known. It may be shown (Degani 1991) that  yo and y1 (also 
C, and C,) are obtained as part of the numerical solution of (5.11)-(5.16). 
Consequently, with (5.26), (5.28), (5.37) and (5.39), the similarity equations contain 
only two pressure-gradient parameters ,8, and pno thus forming a two-parameter 
family of similarity solutions as anticipated earlier. Note that although pno does not 
appear in the similarity equations, it does so implicitly through (5.39). Finally, from 
(5 .8) ,  (5.10d), (5.30), (5.32) and (5.37), the scaled skew angle at the wall is given by 

(5.40) 

to  leading order. 

6. Turbulence closure and similarity solutions 
The asymptotic results obtained in $4 are independent of any turbulence model; 

however, in order to obtain solutions of the similarity equations (5.11)-(5.16), a 
specific turbulence model must be adopted. Here, simple eddy-viscosity formulae for 
the outer layer defined by 

(6.la,  b) 
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are used for illustrative purposes. Here el and e2 are the total (turbulent + kinematic) 
viscosities in the streamwise and cross-stream directions. Although an asymptotic 
analysis cannot achieve closure, i t  does constrain the possible forms allowable for el 
and c2. To this end, consider first the streamwise flow. Substituting the outer-layer 
asymptotic expansions for the total shear stress and velocity given by (4.18) and 
(4.20), respectively, into ( 6 . 1 ~ )  and using the definition of A ,  given by (5.20), it is seen 
that 

where u* is defined by (5 .5) .  The simplest turbulence model is obtained by 
representing as a single term so that 

Tl=-- a2Fl T 2 = - -  el a2F2 
ues* a r 2  ues* a r 2  . (6.3a, b)  

In order to obtain the behaviour indicated in ( 4 . 9 ~ )  and (4.19a), ( 6 . 3 ~ )  implies that 

el - U , ~ * K ’ I +  ... as q + O ,  (6.4) 

which fixes the form of el for small 7. Consequently a simple outer-layer model given 
by 

El = Ue6*E,, (6.5) 

where 

is asymptotically consistent. Here K is the von Kirmin  constant and K is an 
empirically determined constant. The model described by (6.5) and (6.6) is similar 
to that used by Mellor & Gibson (1966) for two-dimensional boundary layers with 
K = 0.016. Now consider the cross-stream flow. Introducing the outer-layer 
expansions (4.32) and (4.38) into (6.1 b) and representing c2 by a single term results 
in 

(6.7) 

which establishes the scale of e2 as identical to that of cl. From (4.33b) and (4.393), 
it follows that 

c2 - U , ~ * K ’ I +  ... as v + O ,  (6.8) 

E 2  = Ue6*E, (6.9) 

and, consequently, a cross-stream model given by 

is also asymptotically consistent. The model described by (6.5) and (6.9) is essentially 
similar to a class of turbulence models currently used to compute numerical solutions 
of three-dimensional turbulent flows (Cebeci 1975; Wie & DeJarnette 1988). The 
model is often referred to as isotropic since the same behaviour is assumed in both 
the streamwise and cross-stream directions. 

In  two-dimensional turbulent boundary layers, the velocity, velocity-gradient and 
the Reynolds stress vectors all lie in the same plane ; however, for three-dimensional 
boundary layers, experiments show that the Reynolds stress vector and velocity- 
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gradient vectors do not coincide in general. Consequently, it follows that the eddy 
viscosities for the streamwise and cross-stream directions must be different and thus 
the eddy viscosity is said to be non-isotropic. Johnston (1976), using data from four 
experiments, remarked that the ratio of the cross-stream to streamwise eddy 
viscosity was in the range 0.2 to 1.0. Similar results have been quoted recently by 
Anderson & Eaton (1987). However, other experiments (see, for example, Fernholz 
& Vagt 1981 ; Muller 1 9 8 2 ~ )  have indicated a ratio of the eddy viscosities of greater 
than unity. Some researchers (e.g. Muller 1982 b) have attempted to model this aspect 
by assuming the ratio € , / E ~  to be a constant other than unity throughout the 
thickness of the boundary layer. However, the results summarized by (6.4), (6.8) and 
(4.28) indicate that the ratio a2/sl must be unity in the logarithmic zone and the wall 
layer to leading order. Note that eddy-viscosity models which are not isotropic 
could be introduced in the present formulation in the outer region of the outer layer 
by adopting a different value of the outer constant K in each of the coordinate 
directions. 

There is some evidence to indicate that an isotropic model for the entire boundary 
layer is appropriate for self-similar flow. Johnston (1976) comments that it is only in 
situations where there are relatively sudden changes in the external cross-stream 
direction that the direction of the total stress lags that of the velocity gradient 
substantially ; however, as the flow subsequently relaxes downstream and adjusts to 
new smoother external conditions, the two directions do tend to coincide. Self-similar 
states are expected to resemble this last condition and hence the model in (6.5) and 
(6.9) is considered reasonable here. With the model given by (6.5) and (6.9), the shear 
stress functions in (5.11)-(5.14) are related to the velocity functions by 

dal( d2Qi q = 8 , 2 ,  q = 8,-, i = 1,2.  
dV dV2 

(6.10) 

Using the model (6.10) and substituting for v, a, and 8, from (5.37) and (5.26), the 
first-order problems (5.11) and (5.12) become 

(EmP;)’+ (1 + 2p,) 7p’; + 2 p p ;  = 0, (6.11) 

( ~ , G ; 1 ) ’ + ( 1 + 2 ~ ~ ) ~ G ~ - ~ ( l + p , ) G ~  = 2yOP;. (6.12) 

Here the primes denote differentiation with respect to 7. The boundary conditions at  
the edge of the boundary layer are given by 

Fi,G;+O as V + O O ,  (6.13) 

and as q + O  by ( 4 . 9 ~ )  and ( 4 . 3 3 ~ ) .  A simple analytical solution of (6.11) is readily 
obtained for the special case b, = 0 (Bogucz & Walker 1988), but it is most 
convenient to obtain a numerical solution of (6.11) for values of =k 0. For a given 
value of p,, the constant C, appearing in ( 4 . 9 ~ )  is determined by following a 
procedure described by Yuhas & Walker (1982). Furthermore, as described by 
Degani (1991), a numerical solution of (6.12) produces a value for yo. Once yo is 
determined, the value of A, may be calculated from (5.39) for a given pno. 

The second-order problems (5.13) and (5.14) are given by 

12 

(8, Pi)’+ (1 + 2p,) qF; + 2p,P; = z,, 
(8, a;)’+ (1 + 2/3,) vG;-$( 1 +p,) G; = Z, ,  

(6.14) 

(6.15) 
FLM 234 
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where Z,(q) = -2K (' +")F; -a, qF'; - (1 + 2p,) Fl F$ -p,(F;)2 - A ,  G,F';, (6.16) 

Z2(7) = 2y,F; + 2y1Fi - w + a l  C; -a1 qG$ +$( 1 +&F1 Gi L I 
- (1  + 2ps)F1 G$ + Ao(Q;)2  -A,  G ,  G; +yo(F;)', (6.17) 

and a1 is as defined in (5.28). The boundary conditions a t  the boundary-layer edge 
are given by 

FL,GL+O as V+CO, (6.18) 

and as q + O  by (4.21) and (4.33b). The numerical algorithm to solve (6.11)-(6.18) is 
not straightforward and is described in detail by Degani (1991). It should be noted, 
however, that the solution of the second-order problems produces values for C, and 
Y1. 

7. Results and discussion 
The outer-layer similarity solutions are considered first. The first- and second- 

order similarity equations may be solved for specific values of p, and pno, which are 
the independent parameters associated with the streamwise and cross-stream 
pressure gradients, respectively. It is possible to obtain solutions to (6.11)-(6.18) for 
a wide range of values of p, and PAo but here results for one representative case with 

p, = 0.25, &, = -0.2 (7.1) 

are described. The situation in (7 .1)  corresponds to a boundary layer subjected to a 
mild adverse pressure gradient in the streamwise direction and in which the external 
streamlines are concave upward with the flow diverging from the plane of symmetry. 
The additional constants associated with the problem are calculated and, to three 
significant figures, 

yo = 0.111, C, = -0.177, A, = 1.58, (7.2) 

y1 = 0.848, C, = -3.65. (7.3) 

In  order to compare first- and second-order velocity and shear-stress profiles, it  is 
necessary to introduce a specific value of the Reynolds number. Substitution of the 
outer-layer lengthscale (5.20) into the match condition (4.22) leads to 

1 u, 1 u, - _ -  - = -logRe,,+C,-C,--CC,, 
u* u* K ue (7.4) 

where Re,, = Re U,S* is the Reynolds number based on the displacement thickness. 
The first-order match condition is obtained by omitting the last term in (7.4) while 
the second-order result is obtained by retaining the full relation. With the calculated 
values of C, and C, in (7.2) and (7.3), and an inner-layer 'log-law' constant Ci = 5.0, 
the value of u* can be calculated from (7.4) once Re,, is specified. The Reynolds 
number Re,, is chosen to be 50000 here to illustrate typical results, and the results 
to first and second order are 

U* = 0.031 68, 0.031 56, (7.5) 

respectively. For this Reynolds number, the second-order correction to u* is small 
and for most practical purposes may be ignored. 



The three-dimensional turbulent boundary layer 349 

The similarity profiles for the streamwise and cross-stream velocities as well as the 
streamwise and cross-stream total shear stresses are presented in figure 2. The 
streamwise velocity profile to second order is given by 

and is plotted in figure 2(a)  using the second value of u* in (7.5). The first-order 
profile is obtained by omitting the last term in (7.6) and using the first value of u* 
in (7.5). It is evident from figure 2 ( a )  that the first- and second-order solutions are 
almost indistinguishable, indicating that the first-order expansion captures the 
essential behaviour of the streamwise velocity profile. This conclusion is similar to 
that reached by Mellor & Gibson (1966) for two-dimensional equilibrium turbulent 
boundary layers. The asymptotic logarithmic behaviour for small values of 7 and the 
characteristic outer ‘wake ’ profile should be noted in figure 2 (a).  Since the velocity 
profiles are valid only in the outer layer, they cannot be continued all the way to the 
wall. In terms of the wall-layer variable y+, the lower limit of the outer layer was 
arbitrarily chosen to be y+ = 100. Since the outer variable is related to the wall-layer 
variable by 7 = y+/Res., then for the Reynolds number under consideration, the 
lower limit of 7 is given by 0.002. This value of 7 corresponds to the location at  which 
the plots in figures 2 (a)  and 2 ( b )  are terminated. 

The cross-stream velocity near the symmetry plane is proportional to u;l (cf. 
( 3 . 1 7 ~ ) )  and the first- and second-order profiles are obtained from 

and 

( 7 . 7 ~ )  

(7.7b) 

respectively, where the first-order estimate of u* was used in (7.7b). Unlike the 
streamwise profile, there is a significant difference between the first- and second- 
order results. As indicated by the asymptotic results, the first-order profile ( 7 . 7 ~ )  
asymptotes to unity in the limit 7 + 0. On the other hand, the cross-stream velocity 
(7.7 b) ,  accurate to second-order, increases, reaches a maximum value, and then 
decreases, thus creating the characteristic ‘bulge ’ in the cross-stream profile. As 7 
decreases further, the velocity asymptotes logarithmically to match the velocity 
distribution in the wall layer given by (4.356). The difference between the first- and 
second-order results is most pronounced for small values of q ;  however, farther away 
from the wall, the difference between the two profiles is marginal, as expected. 

The total streamwise shear stress up to second order is given by 

and the first- and second-order profiles are plotted in figure 2(c).  The first-order 
profile is obtained by omitting the last term in (7.8) and for the second-order profile, 
the value of u* based on the second-order estimate was used in (7.8). Note that the 
total shear stress, unlike the velocity, is regular as 7 + 0 and thus the profiles in figure 
2 ( c )  (and figure 2 d )  may be continued all the way to the wall. As was the case with 
the streamwise velocity, the second-order term produces only a small correction to 
the first-order result. In subsequent results shown in this paper, the second-order 
corrections to the streamwise velocity and total shear stress as well as to the scaled 

12-2 
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friction velocity u* will be ignored. It is noted in passing that the location of the 
point of maximum streamwise shear stress occurs within the outer layer in boundary 
layers subjected to adverse pressure gradients, which is consistent with the results of 
Mellor & Gibson (1966). 

The total cross-stream shear stress up to second order is given by 

T&/U,2 0; = + u* E .  (7.9) 

As was the case with the cross-stream velocity, there is a substantial difference 
between the first- and second-order results near the wall. Since the cross-stream 
velocity gradient is positive from the wall to the location of the maximum cross- 
stream velocity and negative beyond, the shear stress should reflect the same 
behaviour. The first-order shear stress is obtained by omitting the last term in (7.9) 
and is seen to be negative throughout ; hence it is not sufficient to properly represent 
the flow. However, the correct trend is obtained from the full second-order profile 
given by (7.9), being positive close to the wall and negative farther away. 

Next, composite profiles across the entire boundary layer for the streamwise and 
cross-stream velocities are considered. The outer-layer similarity solutions obtained 
previously must be matched asymptotically to an inner wall-layer solution in order 
to describe completely the velocities from the wall to the boundary-layer edge. For 
this to be possible, the function U+(y+) appearing in (4.7 b)  and (4.35) must be known 
and should be such that it satisfies the no-slip condition a t  the wall and the 
asymptotic condition in (4.9b). One such wall-layer profile for U+(y+) has been 
developed by Walker et al. (1989) for two-dimensional turbulent boundary layers and 
was used in the present study. The profile model U+(y+) described by Walker et al. 
(1989) is based upon consideration of the observed coherent structure of the time- 
dependent wall-layer flow. During the majority of any observation period, the 
turbulent wall layer is observed to be in a relatively well-ordered or quiescent state 
(see, for example, Cantwell 1981 ; Willmarth 1975) when 'low-speed streaks ' may be 
observed. The wall-layer development is interrupted by brief periods of strong 
interaction with the outer layer in an event usually referred to as 'bursting ' ; this 
event is always initiated near a low-speed streak and is characterized by a very 
localized and abrupt eruption of the wall-layer fluid. Walker et al. (1989) considered 
simplified representative motions in the wall layer during a typical cycle between 
bursts, and upon time-averaging produced an expression for the mean velocity 
profile in the wall layer. The expression for U+(y+) satisfies the asymptotic condition 
(4.96) for large y+ as well as the correct compatibility conditions a t  the surface, and 
is given explicitly by Walker et al. (1989). It is worthwhile to comment on why this 
profile model may also be used for the three-dimensional boundary layer. It is 
reasonably well-established that a dominant feature of the turbulent boundary layer 
is the hairpin vortex (Smith et al. 1990, 1991) and that the observed low-speed 
streaks are the signature in the wall layer of convected hairpin vortices ; furthermore, 
wall-layer bursting is provoked as a consequence of the adverse pressure gradient 
induced by the moving hairpin vortex (Walker 1990a, b ;  Smith et al. 1991). 
Consequently, in a three-dimensional attached turbulent boundary layer, the hairpin 
vortices (and the low-speed streaks) will generally be oriented in the local flow 
direction near the surface. Thus, the time-dependent development of the wall-layer 
flow will be similar to that in two dimensions, and the profile model of Walker et al. 
(1989) can also be used to describe the mean flow distributions here. 

Composite profiles spanning the entire boundary layer can be constructed using 
the outer-layer solutions given by (7.6) and (7.7) and the wall-layer profiles in (4.7b) 
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FIGURE 3. The streamwise and cross-stream velocity profiles for ps = 0.5, rno = -0.20 at 

Reynolds numbers of (a) .. . . . . Re,. = 5000; ( b )  ---Re,, = 5OOOO. 

and (4.353); in the present study, only terms up to first order were retained in (7.6). 
The complete streamwise and cross-stream profiles are 

U'=u*U'(y+)+ 1+u*- -uc, 

% = U * u + ( y + ) +  L + u * 2  -u,, 

ue { 3 
u, 0 ,  (2 dG d7 I 

where U, denotes the common part given by 

u, = u* -logy++C, , {: 1 

(7.10 a)  

(7.10b) 

(7 .11)  

in terms of the inner variable y + ;  alternatively, using the velocity match condition 
(4.10), U,  may be expressed in terms of the outer variable 7 by 

u, = l+u* - lOg~+Co . {: I (7.12) 

For a specified value of Re8., u* may be calculated from (7.4) and the profiles given 
by (7.10) can be constructed. The streamwise and cross-stream velocities for two 
values of the Reynolds number, namely ResL = 5000 (u* = 0.0369) and Re8. = 50000 
(u, = 0.0306), and the case p, = 0.5,&, = -0.20 are plotted in terms of the inner 
variable y+ in figure 3. For the lower Reynolds number, it may be noted that the 
logarithmic region on either profile does not appear to be well-defined on the graph 
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even though the plotted composite profile explicitly contains the logarithmic 
variation. Furthermore, the values of the velocities only coincide up to around y+ = 5, 
indicating that the region of truly collateral flow extends to a very small distance 
from the wall in terms of y+. On the other hand, at  the higher Reynolds number the 
logarithmic region is well-defined on the graph for both velocity profiles ; the two 
velocities coincide to around y+ = 50, thus indicating an increasing extent of 
collateral flow (in terms of y+) as the Reynolds number increases. This is consistent 
with the asymptotic analysis presented in $4. The plotted results shown in figure 3 
are useful in explaining why the issue of the extent of collateral flow in the wall layer 
has been controversial, as well as why i t  has been difficult to discern a logarithmic 
portion in the cross-stream velocity profile from experimental data obtained at low 
Reynolds numbers. 

The behaviour of the skew angles for the velocity and total shear stress near the 
wall is shown in figure 4 for Reb. = 5000, Ps = 0.5 and /3&, = -0.2. Both skew angles 
must approach the angle at  the wall 8, which is used as a convenient normalization 
factor. The skew angle for the total shear stress, denoted by 8,, is plotted in figure 
4 and is given by 

(7.13) 

and upon using (4.18), (4.38) along with (3.18) and (4.3), it  is easily confirmed that 

(7.14) 
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Because the total shear stress is regular across the wall layer, a composite solution 
for 8, is not necessary and (7.14) may be continued to the surface. Since y' = 100 is 
usually considered to be near the outer edge of the wall layer, a line corresponding 
to this location for Resr = 5000 is drawn in figure 4 as a useful point of reference. The 
velocity skew angle B,, also plotted in figure 4, is given by 

tan 8, 
(7.15) 

(7.10). Experimental data on 
in figure 4 and the predicted 
near the wall, bears a close 

and was evaluated using the composite expansions 
skewing is often presented on the linear scale used 
behaviour, with 8, varying more rapidly than 0, 
similarity to experimental observations (Bradshaw & Pontikos 1985). 

It is of interest to examine the issue of skewing near the surface more closely. Using 
(4.17) and (4.37), along with the definitions of y and A,, given by (4.40) and (5.20), 
it can be shown that 

tan 8, Yo Y+ -- 1 - y +  ..., 
tan 8, Resr u* 

(7.16) 

to leading order. The second terms in (4.17) and (4.37) represent corrections to the 
total stresses across the entire wall layer associated with the pressure gradient ; thus, 
it is easily confirmed that the result (7.16) is valid for all y+. Note that (7.16) is a 
general result which is independent of any specific turbulence model and furthermore 
the skewing of the total stress vector near the surface is dependent only on the 
parameter yo, to leading order. For the velocity skew angle, it follows from (4.20), 
(4.32) and (7.15) that in the outer layer, 

tan 0, - G; +u, Gi+ . . . 
tant?, l+u,F;+ ... ' 
-- (7.17) 

For the model given by (6.10), it may be confirmed that the asymptotic condition 
given by ( 4 . 9 ~ )  may be refined to give 

1 2A F;  -- logT+C,-,Vlogy+ K ... as ~ + 0 ,  
K 

and (4.33) may also be extended to yield 

2Y G; - l++VlogT+ K ..., 

1 
GL - -logT+Co+$qlog2r]+... K K as ~ + 0 .  

(7.18) 

( 7 . 1 9 ~ )  

(7.19b) 

Using (7.18) and (7.19), the limiting form of (7.17) as ~ + 0  may be obtained; upon 
rewriting the resulting expression in terms of the inner variable, it  may be 
determined that 

- N  I--- ' 0  y+ +... as y++cO, 
tan 8, 
tan 8, R,.u: logy' 

(7.20) 

to leading order. Once again the deviation from collateral flow depends principally 
on the parameter yo. It is evident from (7.16) and (7.20) that the correction to the 
leading-order collateral flow in the wall layer is O(log2Resr/Resr), or equivalently 
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0(log4 RelRe), which approaches zero for large Re; however, for the Reynolds 
numbers encountered in practice, the correction term is generally not negligible and 
contributes significantly in altering the collateral behaviour of the near-wall flow. It 
is seen from figure 4 that  a t  Re,, = 5000 both the velocity and total stress vectors do 
exhibit significant skew angle variation across the wall layer. As Resr increases, the 
shape of the curves in figure 4 is not noticeably affected, but the line labelled 
y+ = 100 shifts progressively downward toward the surface, and the wall layer more 
closely approaches being truly collateral. 

It may be noted from (7.16) and (7.20) that the streamwise pressure gradient does 
not influence the skewing to leading order near the surface. Furthermore, the 
deviation from collateral flow for the total stress is proportional to y+, whereas for 
the velocity it is proportional to y+/logy+ a t  the edge of the wall layer, suggesting 
that the total stress skews more rapidly than the velocity with the approach to the 
surface, a result which is confirmed by experimental data (see, for example, 
Bradshaw & Pontikos 1985). Further comments on the skew angle profiles are given 
in Degani (1991). 

Finally, as an additional example, computed results for the cross-flow velocity 
profile for p, = 0 and increasing values of the cross-stream pressure-gradient 
parameter are presented; the Reynolds number is arbitrarily fixed a t  Re,. = 10000. 
The parameters computed from the numerical solutions are given in table 1 ; for each 
case yo = 0.095 and Co = 0.961, and the first-order value of u* was calculated to  be 
0.03773. The composite profiles obtained from (7.10b) are shown in figure 4(a),  where 
i t  may be observed that all four profiles appear to collapse onto one curve. Note that 
the cross-stream velocity normalized as in (7.10b) is independent of the value of the 
cross-stream pressure-gradient parameter (cf. (5.39), (5.40), (6.11) and (6.12)) to 
leading order. Consequently, the computed results in figure 5(a )  indicate that the 
effect of a change in the value of pno in the second-order equations (6.14) and (6.15) 
is negligibly small for the parameter range considered in table 1.  The results in figure 
5 ( a )  are replotted in figure 5 ( b )  with an alternative normalization for u; given by 

-18-8 4 0 I = --u LCo * { u * u + ~ ~ + ) + { ~ + u * ~  d G I  dv -u, I , u.2 Yo 
(7.21) 

where (7.21) is obtained by substituting ( 5 . 5 ) ,  (5.39), and (5.40) into (7 .10b) .  The 
profile function (7.21) is representative of the actual cross-stream velocity attained 
in physical space since u2 = xp h2u;. As expected, figure 5 ( b )  shows that the cross- 
stream velocity increases with increasing magnitude of the cross-stream pressure 
gradient. 

8. Conclusions 
The theory presented in this paper for turbulent boundary layers near a plane of 

symmetry is an important step towards an analysis of the full three-dimensional 
equations; however, the theory is informative in its own right, providing an insight 
into the nature of the structure of boundary layers in and around the plane of 
symmetry. Since the full three-dimensional profiles for velocity and shear stress must 
match smoothly to the profiles obtained here as the plane of symmetry is 
approached, it is expected that the structure of the three-dimensional boundary 
layers will be similar. The asymptotic analysis shows that the streamwise profile is 
affected by the cross-stream flow only in the second order ; hence, to  leading order, 
the streamwise profile is identical to that in two-dimensional turbulent boundary 
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FIQURE 5. Effect of the cross-stream pressure gradient on the cross-stream velocity profile for 
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Profile P h o  4J C‘, Y1 

1 -0.05 0.264 -7.79 -0.585 
2 -0.1 0.527 -7.71 -0.563 
3 -0.15 0.791 -7.64 -0.542 
4 -0.2 1.05 -7.56 -0.521 

TABLE 1 .  Values of the parameters for four calculated profiles 

layers. The importance of the present analysis, however, lies in the asymptotic 
structure obtained for the cross-stream velocity profile; it has been shown that the 
outer-layer cross-stream velocity is not logarithmic to leading order, but is 
logarithmic in the second order for small 7 and that within this structure the 
characteristic ‘bulge ’ in the velocity profile develops. Furthermore, as a consequence 
of the outer-layer structure, it has been shown that the skew angle at the wall scales 
on the friction velocity. The flow in the inner layer is collateral only to leading order ; 
furthermore, the second-order effects of pressure gradient are, in general, not 
negligible and will cause the velocity and shear stress profiles to skew significantly a t  
Reynolds numbers encountered in engineering practice. 

A two-parameter family of similarity solutions was determined which is dependent 
on streamwise and cross-stream pressure-gradient parameters. Similarity solutions 
for the outer layer were obtained by using a simple turbulence-closure model 
consistent with the results of the asymptotic analysis. These solutions were then 
matched asymptotically to  an analytical inner-layer profile. It was shown that the 
extent of collateral flow in the near-wall region, measured in terms of the wall 
variable y+, increased with increasing Reynolds number. Furthermore, the 
logarithmic behaviour for the cross-stream velocity was not apparent graphically a t  
low Reynolds numbers, but became clearly defined at higher values; this probably 
explains why a logarithmic behaviour of the cross-stream profile has not been 
discerned in experimental data obtained at  low Reynolds number. 

The authors gratefully acknowledge the support of NASA Lewis Research Center 
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